

STS-109 Hubble Space Telescope Servicing Mission-3B Flight Readiness Review

Cal Seaman
EVA Project Office
Johnson Space Center

February 14, 2002

EVA Overview

Five Scheduled EVA's

EVA 1: Remove and Replace –V2 Solar Array-2 (SA-2)

and Diode Box with Solar Array 3 (SA-3)

EVA 2: Remove and Replace +V2 SA-2 and Diode Box

with SA-3, Remove and Replace the Bay 6

Reaction Wheel Assembly #1 (RWA-1)

EVA 3: Remove and Replace the Power Control Unit (PCU)

EVA 4: Remove the Faint Object Camera (FOC) and install

the Advanced Camera for Surveys (ACS)

EVA 5: Install the NICMOS Cooling System (NCS)

One Unscheduled EVA

Mission success objectives

Two Contingency EVA's

- HST deploy contingencies
- Orbiter contingencies

EVA Overview

Payload Bay Configuration

EVA Challenges

- The STS-109 mission poses the most challenging EVA mission objectives to date
 - EVA 1, EVA 2, and EVA 4 are within the experience base and have been managed through nominal training techniques
 - EVA 3 and EVA 5 are outside the experience base and present the most significant EVA challenges with the greatest risk of timeline growth
- Challenges / Mitigation Plan
 - EVA 3 (Power Control Unit)
 - The PCU has 36 connectors which are difficult to access and actuate. Most relevant experience was replacement of the Data Interface Unit on STS-82, which experienced significant timeline growth.
 - Challenge has been mitigated by additional timeline margins, the development of new tools, and higher fidelity mockups and training

EVA Challenges

- EVA 5 (NICMOS Cooling System)
 - The NCS conduit installation task is outside the EVA experience base
 - Training has been conducted using high-fidelity 1-G mockups and Neutral Buoyancy Simulations have incorporated a 20% timeline uncertainty factor

EVA Timeline Threats

Aft Shroud Latch Repair Kit Installation

- Could add 30 minutes to 1 hour to EVA 4 and EVA 5
- Door latch torque criteria has recently been increased to reduce this risk but it still exists

Handrail Cover Installation

- If the handrails required for EVA 4 and EVA 5 exhibit flaking paint, then the covers will be installed during EVA 3
- The cover installation task has been performed on STS-103
- If required, the task will increase crew hand fatigue just prior to the hand-intensive PCU connector task

EVA Training Summary

- Nominal and contingency timeline training is complete
- EMU training is complete
- VR lab and Precision Air-Bearing Facility were used for mass handling simulations
- Each crewmember used the high-fidelity PCU trainer once per week for nominal and contingency PCU training
- Aft shroud door trainer was used every other week

EVA Hardware and Tools Summary

External EVA Hardware Summary

- Manipulator Foot Restraint (MFR) Bay 10-Port
- HST Portable Foot Restraints (PFR) Bay 10-Starboard and GSFC Flight Support System
 - HST PFR and MFR latch assemblies modified with new locking handles in response to STS-103 wear issue
 - Orbiter grounding strap added to the Bay 10 assembly
- Four STS PFR's Two each on the Second Axial Carrier (SAC)
 and Rigid Array Carrier (RAC)
- Port and Starboard Provisions Stowage Assemblies (PSA)
- Long slidewire configuration

EVA Hardware and Tools Summary

EVA Support Equipment and Tools

- Over 300 tools manifested to support the mission
- No major new JSC EVA hardware
- Tool-to-Tool Fit Checks: 1150/1153 = 99.7% complete
- Tool-to-Interface Fit Checks: 3599/3601 = 99.9% complete
- The five open fit checks are low risk and have been accepted by the EVA Configuration Control Board

EMU Support Equipment

- Four, airlock stowed, EMU's with consumables for 8 EVA's
- Phase-VI EMU gloves (Two sets for each EV crewmember)
- Wireless Video System for HST closeout photography

EMU Processing

- Ground processing requirements were updated to reflect the certified capability of the EMU and eliminate unnecessary test and inspection on the ground for EMU's still within certification limits
- EMU's are certified to operate on-orbit for 369 days / 25 EVA's between maintenance intervals and for 100 launch/landing cycles
- STS-109 is the first flight with reduced EMU ground processing
 - One of the four EMU's on STS-109 utilized this reduced processing flow
- Application of the certified on-orbit requirements to EMU ground processing does not introduce any new hazards or increase risk to safety or mission success
 - A thorough review of all FMEA / CIL and Hazards was performed.
 Changes were considered "editorial" in nature by the SSRP
 - Utilizing this capability will result in less wear and tear on the EMU
 - All units will still perform Orbiter / EMU integrated testing (V1103.02)

Summary

- EVA lessons learned from STS-61, STS-82, and STS-103 have been reviewed and incorporated
- The STS-109 mission will be a challenge, but the joint JSC/GSFC EVA team is prepared to support the flight

Statement of Readiness

 The EVA Project Office certifies that there are no constraints to the launch of STS-109

Original signed by

G. Allen FlyntManagerEVA Project Office